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Abstract-Predictions for both penetration depth of a specific isotherm and for peak temperatures achieved 
during processing of brick-type workpieces are inferred. A rectangular heated area is thereby travelled at 
constant speed across the top surface of the workpiece. The model accounts for the finite cross-track extents 
of the workpiece as well as for a realistic heat transfer towards an underlying table. The model is strictly 
valid for conduction-dominated processes. New results are obtained for cases where, due to geometry of 
workpiece and heated area, truly three-dimensional heat flow situations are present. This is particularly 
relevant, when the bottom plane’s heat losses or the limiting side planes have a considerable influence on 
the heat flow. Moreover, it is explored which parameter ranges allow reasonable predictions by using 

simplified models, as given by several previous studies. 

1. INTRODUCTION 

LASER surface treatment of metallic substrates is con- 
sidered more and more as an applicable-but still 
expensive-industrial process to realize desired physi- 
cal or chemical qualities just at the surface of a work- 
piece. Techniques hereby may be based on pure solid- 
state transformation or may involve solid/liquid phase 
changes of the substrate material. A review of such 
techniques has been recently given by, e.g. Mazumder 
[ 1] or Molian [2]. Independent of the specific process, 
a prediction of the process parameters is of vital inter- 
est to minimize the number of (expensive) tests. 

In the present article we focus on processes which 
are dominated by conduction. Examples of such pro- 
cesses are transformation hardening, annealing, or 
any melting processes such as surface alloying, hard 
particle incorporation, etc., as long as the flow inside 
the molten region develops only weak contributions 
to the heat transport. That is usually the case if only 
small molten zones are present and/or if the driving 
mechanism of the flow is weak. For such processes 
the result (and success) of the treatment is determined 
by the penetration depth of a specific temperature 
(e.g. transformation or melting temperature) and the 
peak temperature achieved during processing. Pre- 
dictions of the processing parameters, therefore, are 
required to develop correlations between those crucial 
quantities and the adjustable parameters at the laser- 
ing machine. These are the laser power, the scanning 
speed, the geometry and power distribution of the 
laser spot and, as we shall see later on, probably 
the thermal contact of workpiece and the underlying 
table. 

There are many previous studies in the literature, 

both experimental and theoretical, which aim to 
derive predictions for the above described type of 
processes. We shall restrict ourselves in the the fol- 
lowing review to studies with conduction as the domi- 
nant mechanism. In probably the most fundamental 
paper Rosenthal [3] applies the classical methods, as 
catalogued, e.g. by Carslaw and Jaeger [4], to metal 
treatment processes. Thus, he derives a number of 
closed-form solutions for the temperature field below 
a moving heat source for certain sets of (idealistic) 
boundary conditions. The principles of treating 
workpieces of finite width or thickness are like- 
wise developed. Examples for further analytical 
approaches are Cline and Anthony [S], who derive 
predictions for a circular Gaussian heat source, trav- 
elling across a semi-infinite workpiece, or Ashby and 
Easterling [6], who develop predictions based on 
approximate solutions for identical conditions. In a 
more recent paper Shercliff and Ashby [7] bring 
together approximative closed-form solutions and a 
large number of experimental data to derive and 
verify a so-called ‘master diagram’. Their results, like- 
wise valid for semi-infinite workpieces, allow for 
predictions of engineering utility, since a careful test 
against a large number of previous models and exper- 
iments ensures validity in a wide parameter range. A 
study of similar flavour was conducted by Steen et 

al. [8], who employ a one-dimensional conduction 
balance below a scanning line source to derive pre- 
dictions for the penetration depth of a specific tem- 
perature into a semi-infinite workpiece. Again, tests 
of this ‘simple’ model against their experiments and 
against Shercliff and Ashby [7] on the one hand, and 
against fully numerical (FEM) simulations on the 
other hand, demonstrate the range of validity of their 
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NOMENCLATURE 

h, h width and thickness of the workpiece V velocity vector 

u’, u size of heat source in scanning and cross- I, _r, : fixed Cartesian coordinates 
track direction _Yh position of heat source centre 

CP specific heat of workpiece material X, Y, Z moving Cartesian coordinates in 
k heat transfer coefficient (bottom plane) dimensionless form. 
NM Nusselt number 
Pe Peclet number 

Y net absorbed power density Greek symbols 

Q net absorbed power 
t time ; 

number of point sources in % 
dimensionless temperature 

t* penetration depth a* dimensionless penetrating temperature 
T local temperature /i thermal diffusivity of workpiece material 

TX ambient (initial) temperature i. heat conductivity of workpiece material 
f peak temperature J’ density of workpiece material 
T* penetrating temperature z dimensionless time 
u scanning velocity of heat source (0 number of point sources in X. 

predictions. Moreover, necessary conditions for the 
semi-infinite assumption are derived. 

A similar objective, namely the derivation of sim- 
plified models suitable for industrial users, is the sub- 
ject of two studies of Festa et ul. [9, IO]. They analyze 
the two-dimensional heat flow problem below a mov- 

ing line source in a semi-infinite body and predict 
maximum temperatures and hardening depths. They 
demonstrate a simplified (one-dimensional) model to 

reveal reasonably-accurate predictions for large scan- 
ning rates. Similar conclusions are drawn within a 
paper of Timans et al. [l 11, for the identical problem. 

These authors give, additionally, conditions for the 
width of the line source. 

There are likewise fully numerical studies within the 

literature. Kou et ul. [12] develop a finite-difference 
model for the three-dimensional heat flow in a semi- 
infinite body below a rectangular moving heat source. 
Kou [13], moreover, shortly considers both the prob- 

lem of finite width and finite thickness of the work- 
piece, without presenting results for these particular 
cases. He suggests an adiabatic boundary condition 
at the side planes and a third-type boundary condition 
at the bottom plane under those circumstances. 

There are several deficiencies up to the present as 

far as really three-dimensional heat flow situations are 
concerned, i.e. situations where a workpiece of finite 
width and finite thickness is present, generally exposed 
to a heat source of different measure. Moreover, a 
workpiece is typically positioned upon a table and, 
due to the finite thickness of the workpiece, the heat 
flux into the table may become an important issue. To 
summarize, there are few predictions available if the 
semi-infinite assumption, the infinite thickness 

assumption, idealistic boundary conditions or two- 
dimensional models are not appropriate. 

The aim of the present paper, therefore, is to 
develop predictions for (a) the penetration depth of a 

specific temperature and (b) the peak temperature. as 
the most significant quantities during processing (cf. 
Festa c/ nl. [9]). Brick-type workpieces of infinite 
length but finite thickness and width are the focus, 
while in general a three-dimensional heat flow is 
present. The heat flux through the bottom plane into 
the table is particularly investigated, while a control 
of the process by means of the control of the thermal 
contact of workpiece and table is envisioned. All pre- 
dictions are developed by means of numerical (FEM) 
simulations and, in the case of meaningful limits, by 
closed-form models extending Rosenthal’s [3] ideas. 
Finally. we aim to demonstrate in which parameter 
ranges the use of more idealized models (cf. [7-lo]) 
proves to reveal reasonable predictions. 

2. FORMULATION 

In Fig. 1 the problem is sketched. We consider a 
brick-type workpiece of infinite extent in scanning 
direction x, thickness h and width h. At the top surface 
a rectangularly-shaped heat source (e.g. a laser spot) 
with net power density q is travelling at a constant 
speed U parallel to the x-axis. The workpiece is sur- 

FIG. I. Sketch of the problem geometry 
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rounded by an ambient atmosphere of gas at constant 
temperature T, and placed upon a table. 

Within the fixed coordinate system (x, y, z) the 
temperature field in the solid is governed by the heat 
transport equation 

pep r;+(vT)T} = 1V2T, (1) 

together with the appropriate set of boundary con- 
ditions, namely 

ar 
x + +co,y,z: -=O,T=T,, 

3X 
(2) 

ar 
x--i -co,y,z: -= 0, ax (3) 

x,y = h,z: 
ar 
-= -:(T-T,), 
ay 

(4) 

d 
Ix-xhl > -,y = 0,z: 

aT 
2 

- = 0, 
ay 

(5) 

Ix-x,,( <;,y=O,/z] <I: g= -;, (6) 

d a aT 
Ix-xhl <2,y=O,]z] >2: a:= 0, (7) 

b aT 
x,y, jz( = 3: z = 0. 

Thus, we approximate the workpiece bounded by 
essentially adiabatic planes, except for the bottom 
plane and the top plane’s heat source area. The heat 
source area features a constant heat flux boundary 
condition as produced by the new absorbed power 
density q. The bottom plane is modelled, following 
Kou [ 131, using a third-type boundary condition. This 
boundary condition allows, through the heat transfer 
coefficient k, to adjust the complex heat transfer con- 
ditions resulting through contact between the work- 
piece and the table. We neglect in our analysis, for 
benefit of transparency, any heat losses through the 
top plane or the side planes, which might be present 
due to radiative and/or convective effects. It turns 
out, however, that those heat fluxes have only minor 
importance for typical applications, as, e.g. laser sur- 
face processing of steel. In contrast, heat losses 
through the bottom plane into the usually well-con- 
ducting table as well as advective heat losses due to the 
source movement dominate the conduction problem 
inside the workpiece. Thus, the above model (l)-(8) 
preserves the most important effects present during 
typical technical processes. 

The above formulation (1) in fixed coordinates 
leads to a time-dependent problem due to the time- 
dependent position of the heat source x,,(t) within the 
boundary conditions (5)-(7). Within the next step 
we therefore transform to a moving, source-attached 
coordinate system in conjunction with an appropriate 

scaling. The spatial coordinates (x, y, z) are trans- 
formed using 

(X>Y,z)=;[(x+or),Y,z]> (9) 

while we employ a conductive temperature scale and 
an interaction time scale, i.e. 

e = CT- TmV tU 
qh ’ ==h. (10) 

By introducing (9) and (10) into the basic equation 
and boundary conditions (l)-(8) we find the dimen- 
sionless formulation within a moving reference frame 
(X, Y, Z), namely 

g+(-l)g= Pe-’ 
i 

a28 a28 a20 
s+ar'+az" 

I 

X++co,Y,Z: g=o,e=o, 
ae 

X-t -co,Y,Z: ax -_=O ) 

ae 
x, Y= l,z: ay -= -Nue, 

,x1 >&,Y=O,Z: $0, 

(11) 

(12) 

(13) 

(14) 

(15) 

IX] &,Y=O,,Z/ + $= -1, (16) 

,X]<;,Y=o,,z,>~: $0, (17) 

(18) 

The above set of equations (1 l)-( 18) involves certain 
dimensionless groups. The Peclet number Pe ratios 
heat transport by advection and heat transport by 
conduction. The Nusselt number Nu characterizes 
the heat transfer towards the table, i.e. the boundary 
condition at the bottom plane. The limiting situations 
are Nu + 0, which gives the adiabatic boundary con- 
dition, and Nu + co, which corresponds to a perfectly- 
conducting (constant temperature) boundary 
condition. The definition of these groups is 

The above dimensionless formulation, except for the 
characteristic length h, resembles that of Chan et al. 
[ 141 used within the context of a combined solid/liquid 
problem. 

2.1. Similarity analysis 
Given the above dimensionless formulation of the 

problem (1 l)-(18) we recognize a total of 5 dimen- 
sionless groups I$ entering the solution for the tem- 
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perature field 0(X, Y, Z). These are the geometry 
parameters 

as well as the Peclet and Nusselt numbers 

n4 = Pe, rr, = Nu. 

Therefore, for the temperature field 0 we 

dependency 

> 

(20) 

(21) 

expect the 

(22) 

At first sight it seems paradoxical that the power den- 

sity q does not enter one of the dimensionless groups 
fI,. By calculating the temperature field in physical 
units 7(x, y, -_) using equation (10) we recognize the 
role of q as it scales temperature through the reference 
value (qh/l). 

There are several quantities which represent an 
important piece of information for the control of any 
surface treatment process. These are in particular 
the penetration depth t* of a specific temperature 
T*, which might correspond to a transformation, 
hardening or melting temperature. Moreover, the 
maximum temperature ? achieved during processing 
is of interest. 

If we aim to predict the penetration depth t*. this 
in general, can be extracted from a quasi-stationary 
solution for the temperature field. This statement 
holds if the extent of the workpiece in the scanning 
direction .Y is sufficiently large (cf. Bornefeld [I 51). 
Thus, the penetration depth t* depends as 

‘I;* =,f ;.;.;;Pe,Nu.N* > . (23) 

wherein t)* is the dimensionless version of the respec- 
tive temperature T*, using equation (10). Through tj* 
the dependency of the penetration depth on the power 
density q is recovered, as expected. Finally the 
maximum temperature L?is directly available from the 
temperature field at the top (Y = 0) of the centre cross 
section (Z = 0) of the workpiece. i.e. we have 

?=T,+$IAX{@(X.)‘=O,Z=O)}=T,+$6. 

(24) 

and therefore the dependency is 

3. SOLUTION METHOD 

There are several situations for which quasi-station- 
ary analytical solutions for the temperature field can 
be developed, as demonstrated by Rosenthal [3] or 
Carslaw and Jaeger [4]. These solutions, for the case 

of a heat source line or area, may be based on approxi- 
mating the heat source distribution by a finite or inti- 
nite number of point sources, distributed in an appro- 
priate manner at the top plane of the workpiece. The 
first approach leads to a finite series representing the 
source term. Although temperature is singular at the 
position of each single source, this approximation 
reveals physically correct results for the global heat 
balance. ic. in a sufficiently large distance from the 
source positions. It is clear that by increasing the 
number of point heat sources the accuracy of the 
solution is improved. The second approach leads to 
an integral formulation of the source term as dem- 

onstrated by Rosenthal [3]. We employ, indeed. tinitc 
series further on to model the heat source area. Even 
though difficulties may arise for predictions of verb 
small penetration depths, this method saves an enor- 
mous amount of computing time. 

The above approximations as such both give ana- 
lytical solutions valid for a semi-infinite workpiece. 
characterized by h --f x and h --+ K To fultill the 
desired boundary conditions at the side and bottom 
planes of the workpiece, the so-called method of 
images‘ can additionally be employed (cf. Rosenthal 
[3]). An infinite number of tictitious sources is 
arranged such that planes parallel to the scanning 
direction exhibit certain symmetries. This method 
does not, of course, apply to planes perpendicular tn 
the source movement. Therefore. WC remain rcstrictcd 
to a workpiecc of infinite extent in X. 

Within the following sections UC shall develop three 
different approximate solutions in order to access tem- 
peraturc fields for certain relevant situations ana- 
lytically. Finally, a fully-numerical solution of the 
most general problem on base of finite elements is 
given. 

3.1. Workpicce of injinite thickmu 

The simplest solution relevant to the problem given 
in Fig. 1 takes account of the finite width b of the 
workpiece and allows us to pose the adiabatic bound- 
ary condition (18) at the side planes. In the y-direc- 
tion. however, the boundary condition 

?O 
x,Y++%,%: =o 

i? 
(35) 

replaces boundary condition (14) at the bottom plane. 
The temperature field obtained for this situation cor- 
responds to a workpiece which extends in depth to 
infinity. The physical boundary of the workpiece at 
the bottom plane (Y = 1) therefore does not have any 
influence on the temperature field. In practice such a 
situation may occur if the workpiece is in good contact 
with a thick table of similar thermophysical properties 
and,/or if the workpiece thickness h is large. By a 
comparison of time scales, namely interaction time 
d/U should be sufficiently smaller than thermal 
diffusion time h2/lc, Steen et d. [8] have derived a 
criterion for the validity of the semi-infinite workpiecc 
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assumption, which should likewise hold for infinitely 
thick workpieces. Transferred into the present 
notation they give 

h 1 

d’>Z. 

The temperature field for this infinite thick workpiece 
is given by 

r 

0(X, Y, 2) = ~ 

x i: +f 
p= I “=-cc 

with 

R, = ((X-Xv)‘+ Y2+(Z-&- in>‘>‘-‘, 

X” =$&-I], 

In Fig. 2 we give graphically the temperature field 
as obtained from equation (28), due to symmetry, in 
one half of the workpiece. In this example we represent 

the heat source area by 27 point sources, distributed 
on the Z-axis. We recognize, except for the very vicin- 
ity of the source locations, a physically correct tem- 
perature field which, moreover, fulfills the adiabatic 
boundary conditions at the side and the top planes 
(15), (17), (18), as isotherms enter those planes per- 
pendicularly. Moreover, the far-field boundary con- 
ditionsfor Y-+ +co (26)andforX-+ +co(12),(13) 
are fulfilled. 

3.2. Workpiece with adiabatic or isothermal bottom 
plane 

If we consider the table upon which the workpiece is 
positioned to be a poor conductor and/or the heat 
transfer between workpiece and table to be poor, the 
boundary condition at the bottom plane is expected 
to be close to adiabatic. In the above formulation 
(1 l)-( 18) this situation corresponds to Nu -+ 0. Physi- 
cally, in such a situation the heat is removed domi- 
nantly by advection due to the source movement. We 
can construct a solution for the temperature field by 
using, once more, the ‘method of images’. We get 

side 

bottom 

FIG. 2. Temperature field obtained for the workpiece of infinite thickness. Given are equally spaced 
isotherms using A0 = 0.005. Parameters are Pe = 1, b/h = 1 l/4, d/h = l/8, a/h = 3/4. Number of sources 
are w = 1, 9 = 27, number of imaging planes is chosen to assure a relative error below 10e6, which 

corresponds to InI < 103. 
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with 

R,,,,, = 
i 

(X-X,)“+(Y-2m)*+ Z-Z,, - h z 12 

h” ’ 1) 

(29) 

In equation (29) the plus sign has to be used to obtain 
the adiabatic bottom plane. In Fig. 3 a corresponding 
plot of the isotherms is given by using an identical 
modelling of the heat source area as done in Fig. 2. It 
should be noted that the difference with respect to the 
temperature field in Fig. 2 is purely caused by the 

different boundary condition at the bottom plane. 
We recognize an adiabatic boundary as the isotherms 
enter the bottom plane perpendicularly. 

By establishing an intense contact between the 
workpiece and a well-conducting table below, we 
approach a situation where the bottom plane of the 
workpiece is essentially forced to the constant ambient 
temperature T, Clearly this case is included in our 
general formulation of the problem (11))(18) by 
employing the limit Nu + mu. Under those cir- 
cumstances the heat flux through the workpiece into 
the table becomes important and competes with the 
heat sink present due to advection. The scanning 
speed, or argued in dimensionless form the Peclet 
number PP. will determine the balance of these two 

bottom 

heat sinks : for small Pe heat will leave mainly through 
the bottom plane while for large Pe heat will be 
removed dominantly by advection. 

In fact. the solution for the temperature field in 
the case of an isothermal bottom plane (Nu -+ X) is 

included in equation (29) if we use the minus sign. 
The corresponding plot of the temperature field is 
given in Fig. 4. It should be noted that the isotherms 

are parallel to the bottom plane if one approaches this 
boundary. 

3.3. Workpiece with general heat tramftir ot the bottom 

plane 

We use a standard finite element code (FIDAP 6.0) 
to compute the temperature field in the most general 
case of arbitrary NM. The three-dimensional cal- 

culations arc done for one half of the workpiece, 
whereas the infinite extent in scanning direction X is 
simulated by using the computational range 
- 10 d X < 10. Depending on the workpiece 
geometry we employ 20 000-30 000 nodes in 27-node 
brick elements and do the computations in non- 
dimensional variables, precisely according to the pre- 

sent formulation (1 l)-( 18). 
Figure 5 gives both a sketch of the elements used 

in the middle portion of the workpiece, as well as the 
temperature field obtained. In fact, the isotherms are 
given using identical spacing as employed within Figs. 
24. It should be noted that the centre plane, the outer 
region of the top plane and the side planes of the 
workpiece exhibit adiabatic boundary conditions as 

FIG. 3. Temperature field obtained for the workpiece with adiabatic bottom plane. Given are equally 
spaced isotherms using A@ = 0.005. Parameters are Pe = 1, h/h = 1 l/4, d/h = l/8, a/h = 3/4. Number of 
sources are (I) = 1, q = 27, number of imaging planes is chosen to assure a relative error below 10m6, which 

corresponds to In(, (nz( c 10’. 
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side 

FIG. 4. Temperature field obtained for the workpiece with isothermal bottom plane. Given are equally 
spaced isotherms using A6 = 0.005. Parameters are Pe = 1, b/h = 1 l/4, d/h = l/8, u/h = 314. Number of 
sources are w = 1, u = 27, number of imaging planes is chosen to assure a relative error below 10S6, which 

corresponds to Jnl, /ml c 10’. 

obvious from the perpendicular direction of the iso- tatting a tool steel workpiece with a constant tem- 
therms. In contrast the bottom plane features neither perature copper table. 
an adiabatic nor an isothermal boundary condition 
as isotherm directions depend on the local value of 
temperature. Thus, the Nusselt-type boundary con- 

4. RESULTS FOR THE PENETRATION DEPTH 

dition with Nu = 0.26 is active. This particular Nusselt We now employ the models for the temperature 
number has been taken from measurements when con- field, developed in Section 3, to derive the penetration 

FIG. 5. Temperature field obtained for a workpiece with Nu = 0.26. Given are equally spaced isotherms 
using A6 = 0.005. Parameters are Pe = 1, b/h = 1 l/4, d/h = l/S, a/h = 3/4. 
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depth of the temperature 0* into the workpiece. As 
already discussed by using equation (23). besides 
geometry, we expect a dependency on Peclet number 
and Nusselt number. Figure 6 shows in a doublc- 
logarithmic diagram the dimensionless penetration 
depth t*/k as function of Pe. The choice of parameters 
is motivated by an actual experiment wherein tool 
steel has been processed using a laser heat source (cf. 

Schiissler et al. [ 161). 
The solid curves connecting the symbols arc 

numerical (FEM) results for two different heat trans- 
fer conditions at the bottom plane namely (a) adia- 
batic (Nu = 0) and (b) including realistic heat losses 
towards the table (Nu = 0.26). We see that both of 
these curves collapse in a range of higher Peclet num- 
bers Pe 3 2. Additionally for both curves we find 
t*/lz+O as Pr- - 14. Physically. this parameter 
range is dominated by an effective heat removal due to 

advection which for further increased scanning speeds 
(Pe) completely inhibits the penetration of the tcm- 
perature O* into the workpiece. 

By turning to the range of small Peclet numbers, 
we recognize two clearly distinguished solid lines 
depending on the heat transfer condition posed at the 
bottom plane. For the adiabatic boundary condition 
(Nu = 0) we get complete penetration (t*/h + 1) of 
the temperature 0” as Pe decreases towards Pe z 0.3. 

In contrast, for realistic heat losses at the bottom 

plane (Nu = 0.26) a constant value of the penetration 
depth t*,‘h 2 0.12 is approached as Pe * 0. The above 
results can be summarized as follows : for large Peclet 
numbers, featuring small penetration depths, the con- 
sideration of the bottom plane’s heat transfer law 
is not really necessary. In contrast, for small Peclet 
numbers, featuring large penetration depths, the con- 
sideration of the bottom plane’s heat transfer law is 
essential, since those heat losses dominate the process! 

We now turn to the results from the analytical 
models (29) for the adiabatic and isothermal bottom 
plane which arc incorporated in Fig. 6 as dashed and 
dotted lines. WC consider a reasonable agreement of 
the curve obtained for adiabatic conditions (dashed) 
in the range of small Peclet numbers Pe 2 3 with 

FIG. 6. Penetration depth of the temperature 0* = 0.085 as 
function of Peclet and Nusselt number. Geometry par- 

ameters are b/h = 1 l/4, d/h = l/8, a/h = 314. 

our corresponding numerical findings. Both curves 
predict a penetration through the complete workpiece 
for Pe z 0.3. In the range PP 3 3, however, both 
curves diverge strongly as the analytical findings do 
not confirm t*//r + 0 for Pe 2 14. This discrepancy is 
due to the modelling of the heat source area within the 
analytical solution (29) by means of a finite number of 
point heat sources. In detail the singularity of tem- 

perature, precisely at each single source position. 
implies a non-zero penetration depth of each tem- 

perature into the workpiece. The predictions based on 
these analytical solutions are therefore unphysical in 
the range of very small penetration depths. This range 
is shaded in Fig. 6. 

Turning now to predictions for the isothermal bot- 

tom plane (dotted line) we find that the penetration 
depth approaches a constant value of t*!h r 0.06 in 
the limit PP + 0. In the small Peclet number range. 
thus. the analytical curves for Nu = 0 and Nu -+ c 

provide an upper and a lower bound for the pen- 
etration depth to be obtained for arbitrary Nussclt 
number. This conjecture is in accord with our numeri- 
cal predictions for Nu = 0.26. predicting a constant 
penetration depth of t */h 1 0.12 in the limit PC, + 0. 

i.e. within this respective interval. 
It is useful to infer one further limit from Fig. 6. By 

employing the limit Pe + 0 in conjunction with the 
finite thickness of the workpiece and a Nusselt-type 

boundary condition at the bottom plane, we can 
derive an upper bound for the penetration depth. 
which should hold for NM z 1. We get 

t* 
Pr + 0 : 

h 
. (30) 

which for the parameters of Fig. 6 yields t *ill < 0.116. 
This value agrees reasonably with the asymptote of 
the NM = 0.26 curve in Fig. 6. Equation (30) is strictly 
valid only for a single point source and 
(1 - Nlr ‘) CC 1. i.e. close to the semi-infinite case 

(Nzr = 1 ). 
Up to now we have discussed both the effect 01’ 

Peclct number and Nusselt number. Equation (13) 
detects. moreover, a dependency on N*. For the sake 

FIG. 7. Penetration depth as function of lie*. Constant 
parameters are h/h = 1 l/4, d/h = I /8, a/h = 314. Solid curves 

are for Pe = 1.15, dashed curves for Pe = 2.3. 
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of simplified argumentation we plot in Fig. 7 the pen- 

etration depth as functions of the parameter l/B*, for 

which 

1 qh 
e* = (T* - r,)n 

(31) 

holds. Thus, via equation (lo), the abscissa is a dimen- 
sionless version of power density q. Given are FEM 
results for two different Peclet numbers, namely 
Pe = 1.15 (solid) and Pe = 2.3 (dashed), while again 
two different heat transfer conditions at the bottom 
plane are considered. 

If we focus on the curves obtained for the higher 
scan speed (dashed), after exceeding a threshold value 
of l/e* = 7.2-7.4, a linear increase of the penetration 
depth with power is predicted in the range t*/h < 0.5 
for both boundary conditions. As already concluded 
from Fig. 6, both boundary conditions lead to similar 
predictions if large Peclet numbers are present. Conse- 
quently, we find in Fig. 7 both dashed curves located 
close to each other, at least in the range t*/h < 0.5. 
For larger values of the penetration depth (t*/h > 0.5) 

the increase becomes clearly greater than linear and 
in the case of an adiabatic bottom plane (Nu = 0) 
even develops an asymptote as t*/h -+ co for l/0* -+ 
-39. Thus, the predictions resulting from both 
boundary conditions develop differently in this range. 
It should be borne in mind that the range of appli- 
cations in ‘surface processing technology’ by defi- 

nition restricts to small values of t*/h and therefore 
the most important feature in Fig. 7 is the linear 
dependency on l/8*, i.e. on power, in that respective 
range. 

By turning to the curves obtained for the lower 
scanning speed (solid), we find the threshold values 
shifted towards l/6* = 6.16.4 and the initial slopes of 
the curves clearly increased. The linear increase of t*/h 

with l/0* is not as obvious, since, due to large slopes, 
it develops soon into an increase which is greater 
than linear. The curve obtained for an adiabatic bot- 
tom plane (Nu = 0) has its asymptote for a value of 
l/O* g 20. Consistent with the findings from Fig. 6, 
both solid curves obtained for different boundary con- 
ditions at the bottom plane, now give greatly different 
predictions in the whole range of penetration depths 
as both curves diverge for increasing l/8*. This is 
due to the smaller Peclet number which, via reduced 
advective effects, causes a stronger influence of the 
boundary condition at the bottom plane on the tem- 
perature field. 

Next we address the influence of the geometrical 
parameters on the problem. In principle a departure 
from the two-dimensional, semi-infinite or infinite 
thickness cases arises for two reasons : (a) the extent 
of the heat source area in cross-track direction a is 
different from the width of the workpiece b. This 
situation can be viewed as a combination of two linked 
two-dimensional problems. In a ‘near-field’ heat will 
be confined in a slab of width a, while in a ‘far-field’ 
heat will be distributed across the whole width b of 

the workpiece. Thus, in between these two limiting 

cases, a truly three-dimensional heat flux has to be 

expected-heat migrates into the z-direction. (b) The 
thickness of the workpiece h is small, i.e. equation 

(27) is violated. This situation may still be two-dimen- 
sional if a - b holds, but now the boundary condition 
at the bottom plane has a significant influence on the 
heat flow, This, in turn, means that any idealized 
boundary condition in this plane will reveal incorrect 

results. 
In Fig. 8 we demonstrate with a set of calculations 

the transition between the truly three-dimensional 
problem, present for b/h = 1 l/4, a/h = 3/4, as it 
develops towards a two-dimensional problem, present 

for b/h = a/h = 1 l/4. The calculations are done for 
three different values of the parameter a/h, namely 
a/h = 3/4,5/4,7/4, while the total heat input Q = gad 

and the parameters Nu, b/h, d/h are kept constant. 
Given is the penetration depth as function of the Peclet 
number Pe for two heat transfer conditions at the 

bottom plane, namely Nu = 0, 0.26. 
We recognize two solid curves, valid for a/h = 314, 

which are already given in Fig. 6. As a/h is increased 
(compare dashed and dotted sets of curves), the ‘far- 
field’ predictions, i.e. predictions of large penetration 
depths, are in accordance for all cases as may be 
inferred from the common asymptote of the curves 
obtained for an adiabatic bottom plane (Nu = 0). 
Physically this means that heat is distributed across 
the whole workpiece width b and, thus, the width a 

of the heat source area is not relevant. This may be 
viewed as the two-dimensional ‘far-field’ problem. 

In contrast, the ‘near-field’ predictions vary drama- 
tically as, e.g. no penetration is predicted for Pe g 14, 
2, 1.1 (0.3) if a/h is varied as a/h = 3/4, 5/4, 7/4. This 
reflects a strong change of the temperature field close 
to the heat input if a/h is varied, i.e. heat is essentially 
present in a slab of width a (just below the heat source 
area). This may be viewed as the two-dimensional 
‘near-field’ problem. 

Again we can characterize the range, where the 

FIG. 8. Penetration depth of the temperature T* = 1420°C 
as function of Peclet number and geometry parameter u/h. 
Constant parameters are b/h = 1 l/4, d/h = l/S, Q = 390 W. 
Solid curves are valid for u/h = 3/4, dashed curves for 

a/h = 514, dotted curves for a/h = 714. 



boundary condition at the bottom plane does not 
inffuence the problem as Pr 3 2. while for smaller 
vafues of Pe the curves obtained for realistic 
(Nu = 0.26) and adiabatic (Nu = 0) boundary con- 
ditions depart strongly. This finding holds inde- 

pendently for all values of the geometry parameter 
a/h. All curves obtained for realistic boundary con- 
ditions at the bottom plane (,VS = 0.26) approach a 
CQnstant value off *jh as Pr 4 O> namely t*jh = 0.12, 

0.051, 0.0048. Clearly, equation (30) is not able to 
capture the influence of u/h, since it employs a point 
source model (corresponding to the limit u/h ---f 0) 
and, thus, in all cases [*/la < 0. i I6 is obtained. 

In summary we can view the geometry parameter 
u/h as responsible for the ‘near-field tem~~~tures. 
i.e. for small penetration depth predictions. The values 

of u/h and h/h are, moreover, a reasonable measure 
for the three-dimensionality of the temperature field : 
if a/b 2 1 holds, we have a two-dimensional problem 
present and as a/h departs further from unity towards 
cl/h < I we approach a situatio1~ determined by a 
three-dimensional heat flow. 

Finally, we focus on the variation of the workpiece 
thickness h which affects all dimensionless parameters, 

namely h//r, d/h, qilt, Pe and Nu. It allows us to 
demonstrate which differences result if either equation 
(27) holds (infinite thi~kRess case) or if t his equation is 
violated (finite thickness case). Given the parameters 
corresponding to the solid lines in Fig. 6, we can infer 
from equation (27) 

h=l(mm: U z9 5.4 mm min ‘, 

whereas for a double thickness h we obtain 

(32) 

h = 16mm: L’B I.3mmmin’. (33) 

Thus, from equations (32), (33) it is obvious that. the 
range of scanning speeds I/ for which the infinite 

thickness assumption is appropriate depends strongly 
on the thickness h : a large thickness h of the workpiece 

allows for a wider range of scanning speeds. It should 
be remarked here that we carry this particular dis- 

cussion in terms of the original physical quantities 
rather than in dimensionless variables. A discussion 

in terms of dimensionless groups would, indeed, not 
be too transparent since k has been used as scaling 

length throughout all variables. 
Figure 9 shows the results for the penetration depth 

t* from our computations obtained for a thin work- 
piece (h = 8 mm) compared to the results obtained 
for a thick workpiece (h = 16 mm). We lind that all 
curves collapse in the high scanning rate limit, proving 
that the infinite thickness assumption holds perfectly 
for high scanning speeds. In the case of the thin work- 
piece (solid lines) the curves for adiabatic (k = 0) and 
realistic (k = 1000 W IC ’ m ‘) boundary conditions 
depart for scanning speeds U e 100 mm min !, dem- 
onstrating the effect of the bottom plane’s heat lrans- 
fer law. Thus, the infinite thickness assumption is 
violated in that range. In contrast, the thick workpiece 
results (dashed lines) depart at lower scanning speeds. 

FIG. 9. Penetration depth of the temperature T* = 1420 C 
as function of scanning speed U and workpiece thickness /E. 
Constant parameters are h = 22 mm, 0 = 6 mm, d = 1 mm, 
Q = 390 W. Solid lines are valid for h = 8 mm, dashed Iixxx 
for h = I6 mm. Dotted lines are results from the anaiytiwl 
approach with an adiabatic bottom plane for h = S/l6 mm. 

namely for values U e 40 mm min -- ’ . Therefore, in the 
case of a thick workpiece, a larger range of scanning 

speeds has to be considered for which the in~nite 
thickness. assumption is appropriate. The increased 

thickness, therefore, is responsible for shifting the 
scanning speed limit below which the adiabatic and 
the realistic boundary conditions reveal different pre- 
dictions. towards lower values of U. Clearly, the limit 
ir -+ CC leads to a situation where the adiabatic and 
the realistic predictions collapse within the complete 

range of scanning speeds. For this infinitely thick 
workpiece a secondary limit is of interest, namely 

U + 0. This situation is physically characterized by a 
uniform distribution of heat in the :-direction due 10 
large t*. Therefore, a two-dimensional heat flow in an 

‘outer’ region of the workpiece is left. From equation 
(28) we can infer the slope in that limit as 

h-i-xl,U-+O: t” x. L’ ‘_ (34) 

For validation of the numerical results obtained in 
particular for the adiabatic bottom plane (k = 0) WC 

have added in Fig. 9 the analytical results (governed 
by equation (29)) as dotted lines. The asymptotes 

from both methods agree to a reasonable degree. Dis- 
crepancies, most obvious for the thick workpiecc 
(dashed line), are caused by the finite length in s of 
the workpiece as present in the numerical model. It 

was checked for one single data point that a sutlic‘ient 
increase of the workpiece length in x within the 

numerical model leads to a prediction very close to 
the analytical curve. This, however, needs an increase 
of the number of nodes by a factor of up to ten. We 
therefore rely on the analytical curves which should 

hold perfectly in this particular range rather than per- 
forming costly computations converging to identical 

results. 

5. RESULTS OBTAINED FOR THE PEAK 
TEMPERATURE 

We finally turn to the prediction of the highest 

temperature, present on the centre line of the top plane 
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Fio. IO. Peak te~~ratur~ Y? as Fun&on of P&et and 
Nusselt number. Fixed parameters are b/h = 1 t/4, d/h = X/8, 

Q/h = s/4, & = 380 w. 

of the workpiece. Clearly, the analytical approaches 
given in Sections 3.1 and 3.2 are not able to predict 
these data, since singularities in temperature are 
present. Thus we obtain all these data from FEM 
simulations (cf. Section 3.3). The identical set of par- 
ameters as already used for the penetration depth 
prediction in Fig. 6 is employed. 

In Fig. 10 we present only one example dem- 
onstrating the dependency of peak tem~~ture i- on 
Peck% number Pe and Nusselt number 1vu. Again 
for this quantity we recognize identical predictions, 
independent of Nu, in a range of high Peclet numbers 
Fe Y 2. In particular peak temperature falls below the 
respective penetration tem~r~.t~re T* (cf. Fig. 6) at 
a value Pe z 14. This finding is consistent with our 
conclusions drawn from Fig. 6. By turning to the 
range of smaller Peclet numbers Pe e 2 we recognize 
that for the case of a realistic beat transfer at the 
bottom plane (Nu = 0.26) a peak temperature of 
F z 2500°C is approached, which hardly depends on 
Peclet number in this range. In contrast, an adiabatic 
~undary condition at the bottom plane @Vu = 0) 
leads to a steep increase of peak temperature t if 
Peclet number is decreased. Of course, unbounded 
increase of L? is only possible in the absence of radi- 
ative losses (as in our numerical model). Our com- 
putations are therefore expected to reveal unphysical 
results for very high workpiece temperatures-a more 
subtle modellin~ including radiative fluxes at least in 
the top plane would be required in such situations. 

6. SUMMARY AND CONCLUSlDN 

“we have derived a set of~nit~-eI~rn~nt and, in cases 
of me~ingful limits, analytical models to predict the 
penetration depth of a specific temperature as well as 
peak temperature during processing of a brick-type 
workpiece. A rectangular heated area is applied to the 
top plane of the workpiece at constant scanning speed, 
while extents of workpiece and heat source area are 
modelled fairly generally. Predictions are strictly valid 
for conduction-dominated processes. 

The adjustable parameters at the processing 
machine are obviously (i) the scanning speed U (in 

dimensionless form Pe) and (ii) the power density of 
the heat source (in dimensi~~ess form lie*). If we 
focus firstly on the main dependency on Peclet number 
Pe (cf. Fig. 6), we find that penetration depth is inde- 
pendent of the thermal contact between workpiece 
and table (i.e. independent of Rrz) if high Peclet num- 
bers are considered. We fmd in the high Peclet number 
range ~n~tration depth to decrease with increasing 
Pe until at some critical value of Pe zero penetration 
is predicted, For small Peclet numbers, however, the 
thermal contact of workpiece and table plays a crucial 
role as adiabatic conditions at the bottom plane lead 
to complete penetration while realistic heat transfer 
conditions for, e.g. steel and copper reveal constant 
penetratian depth in the limit Pe -+ 0. Thus, the ther- 
mal contact of workpiece and table controls the pen- 
etration depth for small Pe. This finding is probably 
of practical interest since the establishment of some 
desired thermal contact of workpiece and table is 
easily realized by, e.g. the choice of table material or 
introduction of intermediate layers such as graphite, 
etc. The goal during processing, of course, is to work 
with a ‘smooth’ dependency of the process result 
on the processing parameters and, simultaneously, 
achieve the highest possible output in terms of pro- 
cessed area. We shall subsequently term the depen- 
dency on processing parameters “operation character- 
istic’. Under this aspect the thermal contact of work- 
piece and table seems to be one additional ‘free’ par- 
ameter to tailor a more ideal operation characteristic. 

3y varying geometry (cf. Fig. 9) we have further 
demonstrated that the Nusselt number is par~cularly 
effective in controlling the operation characteristic if 
relatively thin workpieces are processed. In contrast, 
thick workpieces tend to follow the predictions based 
on the infinite thickness assumption (independent of 
NM) down to much lower values of the Feclet number. 
Thus, the range where a control of the operation 
characteristic is possible is limited to fairly low values 
of Pe in the case of thick workpieces. 

A further possibility to influence the operation 
characteristic is the variation of cross-track size of 
the heat source area {cf. Fig. 8). in particular if the 
cross-track size a is small against the width b of the 
workpiece a truly three-dimensiona heat flow leads 
to smaller slopes in the middle range of the 
(t*/h) =f(Pe) diagram when compared to a two- 
dimensional heat flow situation (a = b). Additionally 
the limit of operation where zero ~~etration is pre- 
dicted is shifted towards higher vafues of Pe for smafi 
cross-track sizes. Of course, by reducing cross-track 
size, the output of the process in terms of processed 
area is likewise decreased and therefore the goals ‘high 
process output’ and ‘smooth operation characteristic’ 
are in conflict and a compromise needs to be achieved. 

The peak temperature (cf. Fig. 18) is found to be 
likewise influenced by the Peclet number : an increase 
of Pe leads to decreasing peak temperatures, 
Additionally we find that the choice of the thermal 
contact of workpiece and table is a powerful tool 
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in restricting the peak temperatures in particular for 5 
small Peclet numbers. This. again, might be of interest 
from a practical point of view. h. 

The dependency of the penetration depth on the 
second main parameter l/O*, the net heat input. is 
now the focus. We find a mainly linear increase with 7. 
l/H* in the typical range of applications (small pen- 
etration depth). The slope of these linear curves is 8, 
determined by the Peclet number, i.e. we find large 
slopes for small Peclet numbers and vice versa. Here 

the goal of a smooth operation characteristic is readily 9. 
obtained by the choice of high Peclet numbers in the 
actual process. Again the establishment of an intense 
thermal contact of workpiece and table (e.g. 10. 

Nu = 0.26) provides a smoother operation charac- 
teristic if opposed to a poor thermal contact (Nu = 0). II. 
This is particularly true for larger values of the pen- 

etration depth. 
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